MAX materials and MXene materials are new two-dimensional materials who have attracted much attention in recent years, with excellent physical, chemical, and mechanical properties, and possess shown broad application prospects in numerous fields. The following is a detailed overview of the properties, applications, and development trends of MAX and MXene materials.
Precisely What is MAX material?
MAX phase material is actually a layered carbon nitride inorganic non-metallic material composed of M, A, X elements around the periodic table, collectively known as “MAX phase”. M represents transition metal elements, like titanium, zirconium, hafnium, etc., A represents the key group elements, such as aluminum, silicon, germanium, etc., X represents carbon or nitrogen. MAX-phase materials, each atomic layer is made up of M, A, X, three of the elements of the alternating composition arrangement, with hexagonal lattice structure. Because of their electrical conductivity of metal and high strength, high-temperature resistance and corrosion resistance of structural ceramics, these are popular in high-temperature structural materials, high-temperature antioxidant coatings, high-temperature lubricants, electromagnetic shielding along with other fields.
Properties of MAX material
MAX material is actually a new type of layered carbon nitride inorganic non-metallic material using the conductive and thermal conductive qualities of metal, consisting of three elements with all the molecular formula of Mn 1AXn (n=1, 2 or 3), where M refers to the transition metal, A refers back to the main-group elements, and X refers back to the elements of C and/or N. The MXene material is really a graphene-like structure obtained by the MAX phase treatment with two-dimensional transition metal carbides, nitrides, or carbon-nitrides. MXenes material are novel two-dimensional nanomaterials made from carbon, nitrogen, oxygen, and halogens.
Applications of MAX materials
(1) Structural materials: the wonderful physical properties of MAX materials get them to have a wide range of applications in structural materials. For example, Ti3SiC2 is a common MAX material with good high-temperature performance and oxidation resistance, which can be used to manufacture high-temperature furnaces and aero-engine components.
(2) Functional materials: Besides structural materials, MAX materials will also be utilized in functional materials. For instance, some MAX materials have good electromagnetic shielding properties and conductivity and may be used to manufacture electromagnetic shielding covers, coatings, etc. Additionally, some MAX materials also have better photocatalytic properties, and electrochemical properties can be used in photocatalytic and electrochemical reactions.
(3) Energy materials: some MAX materials have better ionic conductivity and electrochemical properties, which may be used in energy materials. For example, K4(MP4)(P4) is one from the MAX materials rich in ionic conductivity and electrochemical activity, which can be used a raw material to produce solid-state electrolyte materials and electrochemical energy storage devices.
Exactly What are MXene materials?
MXene materials certainly are a new form of two-dimensional nanomaterials obtained by MAX phase treatment, like the structure of graphene. The outer lining of MXene materials can connect with more functional atoms and molecules, along with a high specific surface, good chemical stability, biocompatibility, and tunable physical properties, etc, characterize them. The preparation ways of MXene materials usually are the etching therapy for the MAX phase and the self-templating method, etc. By adjusting the chemical composition and structure of MXene materials, the tuning of physical properties such as electrical conductivity, magnetism and optics may be realized.
Properties of MXene materials
MXene materials are a new kind of two-dimensional transition metal carbide or nitride materials comprising metal and carbon or nitrogen elements. These materials have excellent physical properties, like high electrical conductivity, high elasticity, good oxidation, and corrosion resistance, etc., in addition to good chemical stability and the ability to maintain high strength and stability at high temperatures.
Uses of MXene materials
(1) Energy storage and conversion: MXene materials have excellent electrochemical properties and ionic conductivity and are widely used in energy storage and conversion. For example, MXene materials can be used electrode materials in supercapacitors and lithium-ion batteries, improving electrode energy density and charge/discharge speed. In addition, MXene materials can also be used as catalysts in fuel cells to enhance the action and stability in the catalyst.
(2) Electromagnetic protection: MXene materials have good electromagnetic shielding performance, and conductivity may be used in electromagnetic protection. For example, MXene materials can be used electromagnetic shielding coatings, electromagnetic shielding cloth, and other applications in electronic products and personal protection, improving the effectiveness and stability of electromagnetic protection.
(3) Sensing and detection: MXene materials have good sensitivity and responsiveness and can be utilized in sensing and detection. For instance, MXene materials bring gas sensors in environmental monitoring, which may realize high sensitivity and high selectivity detection of gases. In addition, MXene materials can also be used as biosensors in medical diagnostics as well as other fields.
Development trend of MAX and MXene Materials
As new 2D materials, MAX and MXene materials have excellent performance and application prospects. In the future, using the continuous progress of technology and science and the improving demand for services for applications, the preparation technology, performance optimization, and application areas of MAX and MXene materials will likely be further expanded and improved. The subsequent aspects may become the focus of future research and development direction:
Preparation technology: MAX and MXene materials are mostly prepared by chemical vapor deposition, physical vapor deposition and liquid phase synthesis. In the future, new preparation technologies and methods may be further explored to comprehend a far more efficient, energy-saving and eco-friendly preparation process.
Optimization of performance: The performance of MAX and MXene materials is definitely high, however, there is still room for further optimization. Later on, the composition, structure, surface treatment as well as other facets of the material can be studied and improved comprehensive to improve the material’s performance and stability.
Application areas: MAX materials and MXene materials have already been popular in many fields, but there are still many potential application areas to become explored. Later on, they may be further expanded, such as in artificial intelligence, biomedicine, environmental protection as well as other fields.
In summary, MAX materials and MXene materials, as new two-dimensional materials with excellent physical, chemical and mechanical properties, show a broad application prospect in numerous fields. Using the continuous progress of technology and science and the continuous improvement of application demand, the preparation technology, performance optimization and application parts of MAX and MXene materials will be further expanded and improved.
MAX and MXene Materials Supplier
TRUNNANO Luoyang Trunnano Tech Co., Ltd supply high purity and super fine MAX phase powders, such as Ti3AlC2, Ti2AlC, Ti3SiC2, V2AlC, Ti2SnC, Mo3AlC2, Nb2AlC, V4AlC3, Mo2Ga2C, Cr2AlC, Ta2AlC, Ta4AlC3, Ti3AlCN, Ti2AlN, Ti4AlN3, Nb4AlC3, etc. Send us an email or click on the needed products to send an inquiry.